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I. INTRODUCTION

1.1 History

With the invention of the traveling-wave tube (TWT) by Rudolf

Kompfner ElI in 1942, the helix structure was established as the delay

mechanism used to slow down the forward propagation of the electromag-

netic waves. It was this same helical geometry with its aiiier:nt-a:

screw symmetry which ultimately proved to yield the least dispersion and

widest bandwidth. However, a problem was encountered for high voltage

operation: backward-wave oscillation (BWO). At high voltages, the

axial focusing of the electron beam became difficult, which resulted in

the beam interacting with field components other than the fundamental.

At a certain voltage, interaction with the space harmonics became strong

enough to induce backward-wave oscillation. To compound the problem,

the impedance for the electron interaction with the fundamental com-

ponent of the fields was reduced because of the increased energy content

of the noninteracting space harmonics. Though advanced focusing methods

helped to resolve these problems, a better solution was a device which

had a larger interaction impedance of the fundamental component relative

to the space harmonics, while maintaining the wide band characteristics

of The helix. The contrawound helix proved to be such a device.

The contrawound helix shown in Fig. l.la was first investigated by

Chodorow and Chu [2] in 195. They observed that such a structure,

consisting of two tape helices wound In opposite directions, could be

qualitatively analyzed by considering the simple superposition of the

two single-helix fields. In one situation, the fields were thought of
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as being superimposed 1800 out of phase. This yielded a field configu-

ration, labeled the antisymmetric mode, with a decreased axial field and

an increased radial field relative to the usual single helix fields. A

second mode, the symmetric mode, resulted when the two single-helix

modes were considered superimposed in phase. For such a mode, the axial

electric fields of the fundamental component added rather than sub-

tracted, giving a stronger axial field, while at the same time reducing

the radial field. Furthermore, the stored energy associated with the

fundamental component of the magnetic field -- energy which is useless

for electron beam interaction -- was found to approach zero. The impli-

cation was that the fundamental component of the symmetric mode primarly

carried electric energy and that the space harmonics carried principally

magnetic energy. This was in contrast to the single helix in which the

electric and magnetic energy were roughly equal in the fundamental

component of the operating mode. However, such qualitative analysis

ignored completely the interaction between the two helices.

The quantitative analysis of the contrawound helix performed by

Chodorow and Chu was simply that of solving Maxwell's equations under

the appropriate boundary conditions, i.e., a boundary value prublem.

The difficulty arose in defining adequately these boundary conditions

and describing correctly the field configuration for the particular mode

under investigation. To accomplish this, the electric and magnetic

fields were expressed in terms of the surface current density on the

helices. Together with a technique involving variational calculus,

these expressions were used to obtain a determinantal equation in which

the propagation constant in free space was written as a function of the

-3-



axial propagation constant of the fundamental space harmonic. The

variational method was chosen because it had the great advantage that it

permitted the use of successive approximations, which in the final form

converge to the exact solution. The result was a determinantal equation

which was both compact and numerically economical.

Building on the work of Chodorow and Chu, Ayers and Kirstein [31

examined the ring-bar circuit, an easy-to-make version of the contra-

wound helix. The ring-bar structure illustrated in Fig. 1.1b consisted

of a series of rings connected one to another by bars at alternate ends

of a diameter. To manufacture, it was simply a matter of making a

number of saw cuts in a tube. Numerical analysis was done based on an

unpublished determinantal equation for the ring-bar structure derived by

Chodorow and Chu. This determinantal equation was completely unlike

that for the contrawound helix. Rather than describing the fields in

terms of the surface currents, assumptions were made about the form of

the fields themselves. These were then manipulated by a variational

technique into a determinantal equation. Furthermore, Floquet's theorem

was applied to the step screw symmetry of the problem so that mathemati-

cal orthogonality was defined over only half of the normal period,

rather than the usual full period. Useful results were obtained using

this model, which matched experimental data quite well over the first

portion of the dispersion diagram.

t Refer to Appendix B for more details.
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Ayers and Kirstein's work was not strictly numerical, hc,:evcr.

Mostly, they dealt with the experimental aspect of the problem as did

others at that time.

Concurrently, similar experimental work was being performed on the

contrawound helix as well as its related circuits. Birdsall and

Everhard [4] analyzed various forms of these circuits ard how they were

affected by such things as dielectric loading, helix-to-waveguide tran-

sitions, and periodic support stubs. Nevins [5] considered the effects

of altering various geometric parameters along with examining the elec-

tron beam interaction. However, after the initial flurry of work in

this area, interest in contrawound helix structures declined.

-5-



1.2 Purpose of the Report

In spite of their many excellent properties, contrawound helix

type circuits have been neglected in the years since their initial

development. This is mainly because they have been difficult to manu-

facture to the high tolerances necessary, but also because single-helix

technology is well established. However, with today's manufacturing

capability, renewed investigation into these structures is warranted.

It is the purpose of this report to reanalyze the work first

carried out by Chodorow and Chu [2] on an unloaded contrawound helix.

This mathematical model is then extended to include both the effects of

a surrounding conducting sheath as well as dielectric loading. The

results obtained are then compared to previously published experimental

results.

-6-"



1.3 Organization

This report deals primarily with Chodorow and Chu's [2] contra-

wound helix circuit in free space and the more general problem in which

shielding and dielectric loading are considered.

Chapter Two investigates the free space problem. It begins with a

discussion of the mathematical formulation used to derive the dispersion

equation. It then proceeds to comment on the numerical results and how

they compare to experimental results for similar cases.

Chapter Three is concerned with the general problem of a contra-

wound helix surrounded by a conducting sheath and dielectrically

loaded. It is shown how these new boundary conditions effectively alter

the dispersion equation and how this alteration affects the numerical

solution. Furthermore, these results are compared with the appropriate

experimental results so as to determine the effectiveness of the changes

to the determinantal equation.

Finally, several topics related to the solution of the contrawound

helix boundary value problem are covered in the appendices: the general

form of Floquet's theorem for step-screw periodicity, the general

Fourier expansion of the electromagnetic field functions in circular

cylindrical coordinates, and a discussion of the associated Lagrangian

which is used in conjunction with a variational method to obtain a solu-

tion.

-7-



1.4 Mathematical Preliminaries

The mathematical problem is simply to solve Maxwell's equations

under the appropriate boundary conditions, i.e., a boundary value prob-

lem. The problem Is constrained to be source free, so that for the

electric field (E),

V • E-0 (-.1)

everywhere in space. Further conditions are that the structure is

lossless and that the solutions are restricted to the time harmcn!

form eJ ut These restrictions allow Maxwell's equations to be manipu-

lated into wave equations for the electric field,

2E + k2 E. 0 (1.2

and for the magnetic field (H),

V2H + k2H 0

where

in which V and E are the permeability and permittivity, respectively, of

the medium under consideration, and w is the radian frequency. Though

Eqs. 1.2 and 1.3 are vector equ3tions, they reduce to the scalar

-8-



Helmholtz equation as one considers separately transverse electric (TE)

and transverse magnetic (TM) polarizations of the fields. However,

unlike the traditional waveguide in which the boundary conditions can be

fulfilled by either a transverse electric or a transverse magnetic

field, the geometry of any slow-wave structure is such that a superposi-

tion of these two fields is necessary to satisfy the boundary condi-

tions.

1.4.1 Symmetry and Periodicity

The contrawound helix has several symmetry characteristics

uniquely associated with this class of structures. There are two planes

of reflective symmetry, the (r, 8) plane and the (r, z) plane, each

intersecting at the crossover point of the two helices. Considered

together with Maxwell's equations, these reflection symmetries require

that any solution must be either even or odd in z and $, exclu"inz

degeneracy. Such solutions are standing waves which can be combined to

give running waves. Each plane of reflective symmetry yields two types

of solutions, depending on whether a conducting or magnetic wall is

considered. The result is a total of four types of field configurations

,Table 1.1). Of interest is the scenario in which the (r, z) plane of

reflective symmetry is replaced by a magnetic wall. The result is that

the vector component of the electric field in the z direction, E , is-Z

even in $, while that for the magnetic field, H , is odd in $. Because-z

H is odd in *, it must vanish on the axis. In particular, the funda--z

mental Fourier component of H z is identically zero and the energy asso-

ciated with the fundamental space harmonic for the system is stored

-9-



Table 1.1. Symmetry of the field comnonents for the

tne symmetr:c anC antisymmetr':c mc-es.

TYPIE EEN IN 0ODD IN 4

EVEN IN Z OD IN Z EVEN INi ODD IN

Ez H Er Hr E0  Hz
SYMMETRIC .__

MODE 2 Er  Ex H* H l E0 Hr

3 Hr  H2  E0  Ez  H Er
ANTISYMMETRIC ________ _______ _______

MODE 4 HZ E# Hr Er Ex H
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principally in the electric field. The combination of solution types 1

and 2 produces a wave traveling in the z direction with these desirable

properties and is called the symmetric mode.

The antisymmetric mode is a combination of the basic field types 3

and 4. This yields another traveling wave, but one in which the elec-

tric field is shorted out along the z axis. Because the (r, z) plane of

symmetry is now a conducting wall, the energy associated with the fun-

damental component is stored primarily in the magnetic field, a char-

acteristic detrimental for TWT operation.

Like all periodic structures, the contrawound helix is invariant

under the transformation,

(r, *, z) + (r, *, z ± p) (1.5)

where p is the period. This relationship requires a certain functional

dependence in the description of the fields for the structure. Known as

Floquet's theorem, this requirement states that under a translation of

an integral number of periods, the fields can differ at most by a con-

stant. The result is that the axial propagation characteristics are

limited to a particular form.

Floquet's theorem is also applicable to step-turn periodicity,

t
also known as screw symmetry. For the case of the single helix (Fig.

1.2), the step-turn periodicity is described by the differential screw

See Appendix B.
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transformation, 
(r, , z) * r, ± z z + 6z 

(1.6)

p/

where the choice of sign depends on whether the helix is right- or left-

handed. The form of the fields remains invariant, again to within a

constant, for a differential step in the z direction coupled with the

appropriate amount of differential twist. The situation with the con-

trawound helix is that this "differential" step is uniquely half of the

axial period, 6z = p/2, such that transformation of Eq. 1.6 becomes

(r, , z) -(r, i rp Z + R(1.7)

As with the traditional application of Floquet's theorem, the step-turn

symmetry imposes further restrictions on the propagation characteris-

tics. As one might expect, these particular restrictions are an aspect

of coupling between the z and * coordinates.t

1.4.2 Roundary Conditions and Space Harmonics

It is no simple matter to satisfy the boundary conditions for the

contrawound helix. A comparison with the circular cylindrical waveguide

shows the inherent difficulties of matching the boundary conditions for

a slow wave structure. The functional form of the field intensities for

t See Appendix B.
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a perfectly conducting waveguide consists of regular cylindrical

Bessel's functions, each having an infinite number of zeros. This

property enables each mode to individually satisfy the boundary condi-

tions and to therefore exist independently of all the other modes. It

is the closed nature of the waveguide boundary which allows this type of

separation among the modes.

In the mathematical description of the field configurations for

the slow wave structure, the regular Bessel's functions are replaced by

modified Bessel's functions which have no zeros. Thus, it is not

possible to satisfy the boundary conditions uniquely for each mode, but

rather the solution is found in an aggregate of these modes. The dis-

tinction is then made that these "modes" are not really modes in the

sense that they can exist independently of each other, but are Instead

waves, termed space harmonics, which must exist in unison to satisfy the

boundary conditions. These space harmonics are related by the period-

icity of the structure, and each is orthogonal to the rest, in r, 0, and

z. For the contrawound helix, the 0 dependence of each harmonic either

has the form cos (no) or sin (no). The component with n = 0 is labeled

the fundamental space harmonic.

1.4.3 Dispersion Ecuations and Solution
by Variational Calculus

With Maxwell's equations satisfied and the boundary conditions

correctly accounted for, a determinantal equation can be found for the

slow wave structure. The dispersive characteristics -- how frequency

varies as a function of the phase constant (phase velocity over

14



frequency) -- are described by this equation. It is obtained formally

by the usual technique of analysis in terms of orthogonal functions

which yield four infinite sets of homogeneous simultaneous equations.

The overall system is then solved by well known matrix methods.

This formal method of solution, however, is especially inconveni-

ent in the case of the contrawound helix. For unlike the helix, the

simultaneous equations describing the contrawound helix are doubly

infinite over two indices. Thus, a variational technique is used for

deriving approximate solutions to yield numerical results. Though this

technique also leads to the same infinite set of equations just

described, its advantage is that it allows one to systematically approx-

imate the solution to the eigenvalue problem.
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II. THE CONTRAWOUND HELIX IN FREE SPACE

2.1 The Boundary Value Problem

The analysis of the contrawound helix in free space is initiated

by separating the problem into two regions, one inside and one outside

the cylindrical surface r - a, Region 1 and Region 2, resrectively, as

shown in Fig. 2.1. The helices are assumed to be infinitely long, of

equal radii (r - a), and wound with an infinitely thin perfectly con-

ducting tape. The dimensional quantities that describe the structure

are the pitch, the tape width, and the radius. These quantities are

related as follows:

21a
--- cot e (2.1)

p

21r6-- , (2.2)

where

a - helix radius

p - period of helix

6 = tape width

e - pitch angle

- 16-
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2.1.1 The Field Functions

To satisfy Maxwell's equations in the form of the Helmholtz equa-

tion as well as the complicated boundary conditions, it is necessary to

construct a solution using the usual technique of Fourier decomposi-

tion. Thus, each field component is written as an infinite su n of

elementary waves in which each wave satisfies the differential equation

and some of the symmetry conditions. By superimposing the total set of

waves, all other restricting conditions can be satisfied.

Any arbitarary field in a homogeneous source-free region can be

expressed as the sum of a TM field and a TE field. The skew boundary

conditions of the contrawound helix make it necessary to have both TE

and TM fields present in any given mode. Thus, the Fourier decomposi-

tions describing Ez and z in the two regions are

Ez A I (Y nr) 0 < r < a (2.3)f.=,n _. nn z e j £

EB KZ (nr) a < r (2.b)
(2 zIB,n ~.n

and

z =  - n--OZ O C 'n IZ(fn r)l e n is 0 < r < a (2.5)

_D K r)a < r (2.6)
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From Maxwell's equations, the other field components are written in each

region in terms of Ez and Hz.t These are in Region 1,

(0 < r < a)

E L -nI (r r) - I(Yr) e n ejn t
. 2 ,n n n 'n r in 2

Ln -

(2.7)

H A LB r ]-j nz
t-- n-- Y(n r,n n nrY Crn I)2[Y eJ 

(2._ )

and in Region 2

(a < r)

E = n B K (iY r) Jw~ir D KI(Y r ) e eJ
2 . [1r2 2,n 9X n 'Ynr 9.,n z. njE t-" n- - nn r) ,n

(2.9)

CO 20 ZS r ]nr
jB z j

H= I [wE B KIjY r) - D K (Yr2 n- n--- BYn ,n tn [Ynr) 2 D.,n t. ri e

(2.10)

In Eqs. 2.3 through 2.10, I Ynr ) and K i Ynr) are modified cylindrical

Bessel functions. These are necessary for slow waves (phase velocity

t Refer to Appendix A.
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less than c, the speed of light) and are chosen to give nonradiating

solutions. Any derivative of these functions is with respect to r. The

relationship between Bn and Yn is provided by Maxwell's equations (again

for slow waves) and is

2 2 2 (2.11)
n n

where k Is the wave number as defined in Eq. 1.4. From periodicity and

Floquet's theorem, Bn has the property,
n

Bn =B ° + 2n (2.12)
n 0 p

such that $op is the phase shift per period along the structure.t

However, the screw-symmetry or step-turn periodicity provides an addi-

tional relationship between the two summation indices Z and n, whereby

the axial propagation constant can be redefined to bet

B = = B + (L + 2n) L_- (2.12')
n  i,n o,o p

B E6

OO 0

In light of Eq. 2.12, Eq. 2.11 is then reformed as

Refer to Appendix B for details.
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.y2 ,2 -B 2  -k 2  (2.13)
n 1,n = L,n

2.1.2 Boundary Conditions

The boundary conditions to be satisfied are that

n x E is continuous everywhere on the
the cylindrical surface r a a (2.1Lal

except on the helices where it Is zero,

n x E = 0 on helices (2.14b)

and that

n x H is continuous on r - a,
except on the helices (2.15)

where it is proportional to the surface current density. In the above

conditions, n is the unit vector normal to the surface r = a.

2.1.3 The Field Components in Terms of
the Surface Current Densities

Separating condition 2.14a into its orthogonal components yields

the equations:

E = 2 r = a (2.6)1 z 2 Z'z

and

1 2E€ r -a (2. 17)
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From Eq. 2.16, the Eqs. 2.3 and 2.4 are equated. After applying the

principle of orthogonality over one period on the cylindrical surface r

- a, the relationship between the two sets of Fourier coefficients is

obtained:

KZ
A ~B 2)
A,n i,n I

where I I ,(Y na), etc. Proceeding similarly from Eq. 2.17, Eqs. 2.7

and 2.9 are employed to yield the relationship

K'

E,n L,n It (2.'

Examined next is the boundary condition for the H fields, Eq.

2.15. Like the fields, the surface current density on the helices can

be expanded in a convenient form for algebraic manipulation. Its 0 and

z directed components are decomposed as

O IO -e-JB t,n z jz4 (2.20)
-= J,n

+ 1 n e- JB ,n z jz4 (2.21)
i,n B n(z J - JB 'n z e j o (12.22)

Z£ ,n

and

- 22-



z * e-jB e n  ej z (2.23)

t,n tn

in which the "+" and "-" superscripts designate the left-handed and

right-handed helices, respectively, and in which E and n are allowed to

range from minus infinity to plus infinity. In terms of the H field

components, the condition of Eq. 2.15 yields the boundary equations:

H - 2Hz J- + # , r = a (2.24)

and

220 +e Z r- a j
2 - = , r=a (2.25'

by writing Eq. 2.24 in terms of the appropriate Fourier expansions (Eqs.

2.5, 2.6, 2.20, and 2.21), orthogonality is used to express the two sets

of field expansion coefficients (C and D ) in terms of the current
Z,n n

density coefficients. This gives, after making use of the relationship

in Eq. 2.19,

K, J + 0 jK= 2CJ,n J

nn _ t K (2.26)

and

z- Z

D '= in + ,n) 7

1,n KI, K i (2.

Finally, considerations of Eq. 2.25 in which the appropriate expansions

(Eqs. 2.8, 2.10, 2.22, and 2.23) are substituted yields, after some

algebra, the result that
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A ,n a Q K,n (2.28)

and

B , n - Q I,n (2.29)

where

Qn J -_' + Jn I K/ - IjKZ,n jE n,n n 2 1 n ,n) zK1t,n

(2.30)

Again note that the modified Bessel functions have the argument -Y a.

The denominator in Eq. 2.30 is the wronsklan of (I K Jand can be

replaced by -1/(y ,na):

znn

Having written the Fourier coefficients for the fields in terms of the

current density coefficients, Eqs. 2.26 through 2.29, the field intensi-

ties are at last expressed in terms of the surface current density. And

since all field quantities are defined to within a constant, the summa-

tions can be multiplied by the quantity-i//U so as to express the

field components in the following form:

E (r - a, V z) a )2 f z + -j+ 8 ,n a

z Jka t.,n ,n),n a 2

t ,n J2 ,n)I2 Ki e e' £ €  (2.32
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E (r -a, * )L a I(Z +0ka t,fl t~ t t (zt~n - z,,nJ

s t na K I +(ka )2 K'I'I +~ 4+J E~n
Y ti a i i E . \f,n tn Z

(2.33w

H (r ;S a, *,z) (y a) X- + +..
z YIa) t 1 Ln Ln

*KI(Y~ a) i, (y ~r) e- JBEnze (2.34a)

H (r a, z) (y- a)(Y- +) j +
Z n nZ f, n En

*If (y~ a) K~ (' r) e-i nz e4
i i~n Z ,n

H (r S a, , z) ZB -' a O- +O

t~n y t~a f.n t n

*Ki (Yv' ,a) r~(~) - y a

zj + z j +,~

K t~ (y t~na) Ii5Yi~nr) e- istn (2.353)
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H (r 9 a,., z) - I a )
0,n Y,n a ,n ,n

* I' (-Y a) K (-Y r) - Y a
r 9 i,n E ,n ,n

* ~. kjZer Z~ ai n T ~Z,n Z,n) Y n a ,.n ,

* IL (f,n a) K (Y,nr)} eJitLnZ e (2.35b)

in Eqs. 2.32 and 2.33, the modified Bessel functions have for their

arguments Y £,na , and throughout Eqs. 2.32 through 2.35, the indices Z

and n range from minus infinity to infinity.

2.1.4 The Surface Current Densities on the Helices

With the field components written in terms of J and J

is important to analyze in some detail the characteristics of the sur-

face current densities.

From the boundary condition of Eq. 2.15, H and Hz are continuous

at r - a, except on the helices. To meet this condition, the surface

current densities must be constrained as

J a 0 off helix (-) (2.36a)

J a 0 off hel.x () (2.?6t>
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In other words, there can be no current off the helix tapes. A con-

straint such as this is somewhat of a novelty in boundary value prob-

lems. In this case (as well as other open structures), the boundary at

r - a must be explicitly defined to satisfy the geometrical considera-

tions. Similarly, the current amplitudes are chosen to satisfy the

symmetry properties and the particular mode of operation.

To obtain the symmetric mode as defined in Section 1.4.1, it is

necessary for E r, E z, and H to be even in 0, while H r, H z, and E are

odd in *. From Eqs. 2.24 and 2.25, it follows that the current densi-

ties must satisfy the same symmetry conditions as the fields. Thus,

Zj+(a, 0 z) zJ-(a, -€, z) (2.37a)

and

J +(a, 0, z) = - (a, -0, z) (2.37b)

To facilitate the narrow tape approximation in which it is assumed

current flow is primarily in a direction parallel to the helices, it is

advantageous to express zJ± and i± in terms of components parallel and

perpendicular to the appropriate helix tape. Referring to Fig. 2.2 and

noting that each pair of currents (J-, IJ) and (-J, 'L+) is oriented

symmetrically with respect to the z axis, the following expressions may

be formed:
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zJ-(a, *, z) sin e cos 8 (2.38a)

- 'J-(a, f, z) ± J'(a, *, z)

#J-(a, *, z) cos e sin e (2.38b)

Z J (a, *, z) sin 8 cos 8 (2.39a)

- ±-J+(a, *, z) * J (a, , z)
J+(a, *, z) cos e sin 8 (2-39b)

Condition 2.37 then becomes

I *(a, C z) - Ij-(a, -0, z) (2.40a)

J +(a, *, z) - LJ-(a, -, z) (2.40b)

With the Fourier coefficients for IJ- and 'J± defined in the usual

way,

*j :(a , z)- In ejzO (2.41a)

R,n

LJ-(a, * z) " " JfJ,n e nZe j
, a ) e -J ~ io(2.41b)

1,n n

the field expansions can be written in terms of these coefficients.

However, by making the assumption of narrow helix tapes, the resulting

expressions for the fields are greatly simplified. Mathematically, this

assumption translates to
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J cot e << IJ and ±J tan 8 << IJ

from which the set of Fourier coefficients

Ij±
Z,n

is seen to dominate. Thus, Eqs. 2.38 and 2.39 can be reformed as

z J-(a, €, z) sin 6 (2.42a)

: 'J-(a,¢,z)

4J-(a, z) cos e (2.42b)

and

zJ+(a, 0 ,z) sin e (2.L2c)

± 'J(a,O,z)

J (a, €, z) cos e (2.42d)

Finally, since

6 ,n  - _,n+t (2.43a)

, - Bt,n_. (2.43b)
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the symmetrical relationships between the Fourier coefficients for IJ+

and IJ can be established.t Making use of Eqs. 2.40a and 2.41a, thesp

become

It , n " - n+

-L,n + ,n

2.1.5 The Determinantal Equation from the Exact
Solution to the Boundary Value Problem

As mentioned in the previous section, because of the nonhomogene-

ous character of the boundary at r - a, the geometry of the structure

must be reflected in the nature of the surface current densities.

Specifically, each surface current density, J and J-, cannot exist off

its respective helix (Eq. 2.36). And from the relation between H and J,

it follows that this is also a restriction on the H fields at r = a.

There is a similar condition for the E fields; namely, that

E (r = a) - 0 on helices (2.45a)
z

E (r = a) - 0 on helices (2.45b)

which is, in fact, the boundary condition 2.14b.

To satisfy Eq. 2.36, the constraint on the surface current densi-

ties, the usual technique of analysis in terms of orthonormal functions

t See Appendix D for details.
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is used.t Needed are two complete sets of orthonormal functions

(labeled g+ and g ), one for each helix tape, defined on the tapes

only. Making use of orthogonality allows zJ ana to be written
J to ewrte

in terms of these functions so that each of these current coefficients

will be compatible with the constraint of Eq. 2.36.

The result is that the Ez and E expressions are now summed over

four indices rather than just two, and Eqs. 2.45a and 2.45b take the

form

E (r - a) a) a K I ,nJ-,G9 L,n (Ytn Ii 1V 1,V nuv

"V tv ,n UeV ~nul Ln
* - G- + I

e e'1 o - 0 on helices (2.46a)

Refer to Reference 2 for detailed discussion, pp. 38-46.

-32 4

ll l l~m 1 1 nlnm l nn l nnl lii



E (r-a) (tn tLB a)KI, zJ" G

zJ+ G+ IL
UtV Uv L,n;u,v (dG t, aY L

+ (ka) 2 Kil' f J_ G_
t 1i,V t,n;u,v

+In G e t n e 1  - 0 on helices

(2.46b)

+i

In Eqs. 2.46a and 2.46b, the functions G, and G are thet~n~u~v ,n;u,v

result of applying orthogonality to the two sets of orthonormal func-

tions and gIlos g,v I.,v

Finally, one can operate E. and E with the orthonormal functions

g and g to obtaingJ,v U,v

SE (r - a) g - (2.47a)
z 

b

and

E (r - a) g Z 0
V' ,

V  b

Equations 2.47 and 2.48 are zero over the entire cylindrical surface r -

a, a result of g and g being defined only on the helix tapes,

while Ez and E are zero on these same tapes. Applying orthogonality to
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Eqs. 2.47 and 2.48 over the cylindrical surface r - a eliminates the

double summation over the indices u' and v'; and if the expressions in

Eqs. 2.46a and 2.46b are substituted for Ez(r - a) and E (r - a), the

result is four doubly infinite sets of linear homogeneous simultaneous

equations having the same number of unknowns. By such manipulations and

subsequent interchanging the order of the two summation signs I and
Z,n

one finally obtains from Eq. 2.47,
U9V

U Z,vt£,n jn;uv Yt,n E L .n;u9.vj

za+ [t[ I[Y, ,~

I ,V U V n ,n;p,v ( ,n a  t ,n;u" v'

S *J G (Qte a) K I G ,
V L ,n;w,v in tttn;u'v'1

V 9Vnn

(2.49a 1

and from Eq. 2.48,
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z G- (LB a) K I Gn+

# 1j+ G , I()n;K , a,n a L L}GIn; IV]

U IVUV n; iI ~ ~ Iv

r 2

JIV U I V[i.n G.n;uv Z, n a j I

(2 . 5 0a)
b

A solution exists only if the determinant of the coefficients of these

equations vanishes. Thus, formally at least, a determinantal :uation

can be obatained in which B a is calculated as a function of ka. The
0,0

problem is simplified by noting that the symmetry of the structure

allows J to be determined from J or vice versa. The four sets of

equations then degenerate into two sets of independent equations:

either Eqs. 2.49a and 2.50a or Eqs. 2.49b and 2.50b.

However, the difficulty involved in the calculation of numerical

results is clear, and a more convenient form for deriving approximate

solutions is desired.
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2.1.6. Using the Variational Method to Derive an

Approximation to the Determinantal Equation

As mentioned in Section 1.4.3, a variational technique is useful

for deriving approximate solutions to yield numerical results. Begin-

ning with one of the standard forms of the Lagranglan for an electromag-

netic field, a variational expression is found for the present problem

in terms of field intensities, which satisfy Maxwell's equations as well

as the symmetry and periodicity conditions, but not the boundary condi-

tions on the cylindrical surface r - a.t The result is an expression

for the complex power, I, which might be generated or absorbed by the

cylindrical surface r - a:

I - f dz a • (r - a) x H(r - a) - E (r a) x 2H(r -a)

0 0

(2.51)

Because the terms within the bracket are dotted with n, the unit vector

perpendicular to the surface r - a, one needs only to consider the

tangential components of E and H. In light of Eqs. 2.16 and 2.17, Eq.

2.51 is rewritten aR

I - f J a do n E(r - a) x 1 H(r - a) - 2H(r - a)] (2.52)

t See Appendix C.
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fp f 21r (r-a
I 2 a do E(r a)o + E - a)il

X ( H(r - a) H (r - a) + + [lHz(r - a) - 2Hz(r a) z (2.53)

Writing the tangential components of the H field in terms of the surface

current density (Eqs. 2.24 and 2.25) allows Eq. 2.53 to be expressed as

I = dz a do E (r - a)LJ + J + + Ez = a)J+

By employing the usual Fourier expansion for E¢, E, J, and j and

performing the integration (equivalent to an orthogonality integration

whereby all the cross terms of the multiplied summations are elimi-

nated), the following form for the variational expression results:

I= [En ~E.(r - a)* Jn + -J+n + Ez(r - a)*, J_ + ZjtnL,n Z ,n n Zn d L En

(2.95)

The solution to the problem is then given by

[6 1 ,n; j Z,n 0 (2.56)

but like J and J , the small variations SJ and 6J must themselves

vanish off their respective helices. Once this is taken care of, the

four doubly infinite set of simultaneous equations which result are
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Identical to Eqs. 2.49 and 2.50.)

However, the goal here is to find a simplified version of the

determinantal equation. Using the narrow tape approximation, Eq. 2.42,

the variational expression

is written out in t -,,. 3f the E field expansions given -n Eqs. 2.32 and

2.33. After simplifying and making use of the relations in Eqs. 2.44a

and 2.44b, this becomes

where

( Y-* a)2 Ko(.J' na) IY(na) sin, 2  (2.58)

I-2[ U~ o,n/ +~ o[ a o( J Ja

ns2 + a (ka )2 Kn-- ]n2e

Y -,n z ( K sn Y , n  ) i t

2.7

- (is ,n a) K I sin 28 (2.59)
tn n2 259

t See reference 2 for details, pp. 47-54.
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and

2 ]
( Y a)2 K It sin 2  - [(to:-na) Kt~ + (ka) 2 KLIJ~jC 8(.0

As in Section 2.1.5, the surface current densities can be made to

conform to the constraint given in Eq. 2.36 by writing [J in terms ofL,n

a complete set of orthonormal functions which are themselves aefined

only on the helix tapes. However, for an approximate solution, Jmay

be given by a finite number of terms of certain convenient functions,

each having an unknown coeffielent and each defined only on the helix

tapes. Though the degree of accuracy increases as the number of terms

in the sequence increases, it has been found that a one-term approxima-

tion provides good results, while greatly simplifying the variational

expression. For the one-term approximation, there is no variational

problem, and the determinantal equation is simply

I 0 (2.61)

Thus, [i- is approximated by

JBo z 2f _

A e , 0 S z S p and 2z 2 _rz + _ (on helix)
p 2 p 2

Ij - =(2.62)

0, otherwise (off helix)

The Fourier coefficients iJ, are then found by setting the Fourier

expansion for i (Eq. 2.41a) equal to Eq. 2.62 and apolying orthogonal-

ity,
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- A 1P 1 2,rz/p+{/2 eBo -Jz

f f,n 2rp dz d e '0z d ,n eJ LO (2.63)o 27rz/p-&/2

The Integral over € reduces to

f2iz/p.Q/2 
JLi sn(

2z/p-/2 e J  - e 
(2.64)

and the integral over z then takes the form

27nz P( -B LPd eJB°'z e-JB 'Z eit-2z eJP' o t B,n

f dz e 0, e e e 002 (2.65)
o Bo, Bg~

O,0 L,n p

Since

B - B + + 2n) - (2.12')
L,n o'o p)

Eq. 2.65 reduces to

- (e-j 4n ) 2 p  sin (2wn) (2.66)

2p ,n -0

0 ,0(2.67)

0 ,n 0

Considering Eq. 2.63 in its entirety yields the result that

iJ - A L- a 6(n) (2.68)

where
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sin (L&/2) (2.69)£" (9612)

and

6(n) - (2.70)

11n

From Eq. 2.57, the determinantal equation becomes

2U + 2 (Y9.0  Y 0 (2.71)
0'0 i

The reason there is no Z term in Eq. 2.71 is because of the delta

function in the expression for J,n- (Eq. 2.68). In the original

expression for the variation, Eq. 2.57, ZZ, n is multiplied by IJ,n+ "

While n can only be zero, the quantity (n + ) is never zero since

E Z 1. This implies that

IJ ,n+. = A - a 6(n + Z) (2.72)

will always be zero, as the delta function will never take the form

6(0).

2.1.7 The Single Helix Determinantal Equation

The corresponding determinantal equation for the single helix is

presented here for completeness. It is also helpful to have it in a

form which is easily adaptable to the more general boundary value

problem described in Chapter Three.
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Instead of Eq. 2.71, the determinantal equation for the single

helix is

U0 + V + M2~ (Y + Y- 0 (2.73)

Noting that Y£,o for the contrawound helix is identical to Y for the

single helix, the terms U0, Y£, and Y- are simply Uo o , Y and

Y- ,o' respectively. The Vo term results from the fundamental component

of the TE fields, which is of course not present in the symmetric mode

of the contrawound helix,t and has the form

V - (ka) 2 Ko(Yoa)Io('oa) Cos2e (2.74)

It should be of no surprise that the determinantal equation for

the single helix differs only slightly from that of the twin helices.

However, this difference is enough to significantly alter the dispersion

characteristics, as will be seen in Section 2.2.

t This property Is demonstrated analytically in Appendix D.
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2.2 Results for the Free Space Problem

The formulation of Sections 2.1.6 and 2.1.7 for the free space

problem is implemented with a HP 1000 minicomputer.t

Fixing the values of e and &, the determinantal equation is solved

numerically to obtain 8 ooa as a function if ka, for the contrawound

helix, and 8oa as a function of ka for the single helix. Since 8 oa -

80a, all dispersion plots are made with respect to B a. Furthermore,

the ordinate and abcissa are normalized in the conventional manner by

the relations

ka/cot e - p/Afreespace

Ba/cot 0 - P/Ahelix

where A is the wavelength.

Before proceeding, it is important to note that the numerical

results compare well to experimental only for narrow helix tapes (6 < 1)

such that the overlap region between the two "touching" tapes is kept to

a minimum. Nevins [12] demonstrates that the discrepancy between the

theoretical predictions and experimental results is due to the currents

deviating from their respective helical paths. When current flow from

one tape to the other is prevented -- i.e., the two helix tapes are not

allowed to touch -- the predicted and experimental results compare

closely and are not dependent on 6.

t Refer to Appendix E.
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Figures 2.3 and 2.4 show how varying the pitch angle affects the

dispersion, for E - I and - 2, respectively. The pitch angle is

reduced as cot e is increased from 2.5 to 10, resulting in a decrease in

the group velocity, Vg (vg a d(ka)/d(Ba)), along with a decrease in the

phase velocity, Vp Cvp - ka/Ba).

Figures 2.5 and 2.6 show the effects of varying &, while cot e is

fixed at 10 and 5, respectively. In both cases, changing the tape width

has a negligible affect on the dispersion characteristics for the single

helix, while those for the contrawound structure are altered consider-

aoly. The reason the contrawound circuit Is so affected Is due to the

interaction between the two helices, which becomes stronger as the tape

width is increased.

Experimental results of Birdsall and Everhart [4J are plotted

along with numerical results in Fig. 2.7. In both cases, the dispersion

increases with increased tape width. The deviation between the theo-

retical and experimental results is due almost entirely to the fore-

shortened current paths which result when the two helix tapes are

allowed to touch. However, the effects of finite tape thickness must

also be considered.

Experimental results [4] for several tape thicknesses are plotted

in Fig.s 2.8 and 2.9. Correlation with theory improves as the tape

thickness Is reduced; furthermore, a comparison between the two figures

reveals that there is better agreement between theory and experiment for

the smaller tape width, -/4.
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III. ANALYTICAL CONSIDERATIONS OF METAL AND DIELECTRIC
LOADTNG ON THE CONTRAWOUND HELIX

3.1 The Boundary Value Problem

To study the effects of dielectric loading on the dispersion

characteristics for the contrawound helix, the dispersion equation

developed in Chapter Two must be altered so as to allow for variations

in the dielectric properties. As before, the problem is separated into

two regions, but each with its own dielectric constant. Figure 3.1

shows schematically that the permeability is still that of free space,

P 0 while the permittivity is arbitrary, cI or £2. The field quantities

are written as a Fourier decomposition in each region and are then

matched across the boundary r - a to express them in terms of the sur-

face current density on the two helix tapes. Finally, the variational

method is again employed to obtain a determinantal equation.

If Region 2 is bounded by a conducting sheath at r - b, Fig. 3.2,

the problem becomes one in which the contrawound helix feels the effects

of an external shield. This effect is handled mathematically simply by

reforming the modified cylindrical Bessel function(s) in Region 2 to

properly account for this boundary.

3.1.1 The Field Functions

Before writing the Fourier expansions for the field quantities, k

and Y must bp redefined to correctly account for the dielectric proper-

ties in each region. Thus,
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k w f o i - 1, 2 (3.1)

and

(B2 k~i 1 12- 1, 2 (3.2)( ,n i ,n

where i denotes either Region 1 or Region 2. Furthermore, the intrinsic

wave impedance is defined to be

ni . - 1 =,2 (3.3)

To facilitate both clarity and understanding, a shorthand notation is

adopted in which the Z and n dependence of the terms in the Fourier

decomposition for the field quantities is assumed:

Y i £(,n)

B E i,n  (35)

F(Y r)- Ft[(Yn)i r], F, - I,, Ki, Ij, K' (3.6)

A A in]

B B I-
(3.7)

C C i£,n

D -- ,n
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Consequently, the Fourier expansions may be written in a form which

assumes summation over the two indices t and n whereby

'-'n---n

In this notation, the expressions for Ez, Hz, E, and H in the two

regions are as follows:t

(0 < r < a)

1 Ez 1 Z n AI(Y1 r) e-Joz 
e j E (3.8)

E 2 AI(Yr) - j YT r) e-JBz e  (3.9)
Yjr

1

Hz L Z i( r) eiBZ e (3.10)

IH1 l j kt AI,(Y 1 r) r CI(Y r) e -j BZ eJ4 (3.11)

(a < r) or (a < r < b)

2 - f2BKe(Y 2
r ) ej z e j E (3.12)

n2l k2

E2 -.. BK(r k 2 -J' j " 3z3
2 E 2  B(Y2=r) - j Y DK r  e (3.13)

t See Appenedix A for more details.
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D eJ~z eJt¢

H " - K(Y 2 r) e- e (3.-1)

K 2 2

2 HO - J BK%(Y 2r) 2 DK h(Y2r) e -JBZ ejLO  (3.15)

If Region 2 is unbounded, the modified Bessel functions in the last four

equations are simply,

K - K I
e Kt LkY,nh r]

K' - K4[(Ytn)2 r]

(3.16)

K h a K i[(Yin) r]

K' - K '[(Y~ r]n

If, however, Region 2 is bounded by a perfect conductor at r - b, these

same functions take the form (in shorthand notation),

Ke - I(Y 2 b ) K(Y 2r) - K(Y2b) I( 2 r)

K' - I'(Y 2b) K'(Y 2 r) - K'(Y2 b) I'(Y 2 r)

(3.17)

Kh - 1'(Y b) KtY r) - K,(Y b) I[Y r)

h 2 2 2 2
K - I(Y 2b) K'(Y2r) - K( 2b) I'( 2 r)
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Applying boundry conditions 2.14 and 2.15 at r - a and prr-dIng

as in Section 2.1.2, the Fourier coefficients for the field components

are determined in terms of the surface current density Fourier coeffici-

ents. Letting

z± ZJ± (3.18)

J J,n

and

j- v (3.19)J£,n

the expression for C is found to be

C R(J - + zj+) + SUOj- + 0j+) (3.20)

where

£T 2  a)2- (YQa)2 ] (3.21)

n 2F

T) 2 2 -Ya2

n2 INYI

k1 1 5a8Y2 a) n 1QM \2 -2

ten 2 1)3-I(Y 2j+ Q (3.22)
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2

1 2 1 n~tI ~(3.23)a2y Y i IK' - k Y K I

M 2 82 rI 12 % f(Ya)2 _ (Y2 a)2 (324
M - \3 lk Y K' - k nlYK(32)
(Y 2 a) 3 (Y1 a) 2 2 1 1 27h"

and

NWk1 in 2 Y2IK e- k 2 1 YKAI a1  2 _(\a21 3.5
N YiY 2n2K - M Y 2  _ y 1a (3.25)

Similarly, the expression for A is

A - j [T(ZJ" + zJ+) + X(¢J- + ¢J+)] (3.26)

where

T -(3.27)N

and 1 1 Y ) (3.28)N.- .Y )]

In the above equations, the argument of I and I' is Y a, while Keg Ke,

Kh, and K' take the form of Eqs. 3.16 and 3.17 with r - a. Expressions

for the Fourier coefficients B and D are determined from the relation-

ships

B -(3.29
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and

- c - j (3.30)

3.1.2 Approximating the Determinantal Equation

As outlined in Section 2.1.5, the solution to the boundary value

problem resulting in the determinantal equation can be found by solving

four doubly infinite sets of linear homogeneous simultaneous equations,

each having the same number of unknowns. However, a more manageable

approach is to use the variational method of Section 2.1.6 to obtain an

approximation to the determinantal equation.

Since the variational expression for the current problem is the

same as that for the contrawound helix in free space, Eq. 2.55 may be

used directly. From Eqs. 3.20 and 3.26, the expressions for Ez and E

at r - a are

E(r - a) J 1 i[T(Zj- + zj) + X[Oj-+ 0j+)] e-Jez e Jz (3.31)

and

E (r ) - j I zj- + zJ) + +j )

k, II[R'zj- + zj+) + S(- +j+ e-JBz e J£

1 L1
(3.32)
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These expressions are substituted into Eq. 2.55 resulting in Eq. 2.57,

with Uo,n, Y and Z defined as follows:

L~n' L,n

Uo, n - niIT sin 28 (3.33)

1,n 1 Y12 o 7

y -n si 1  ] ck1  b

+ nIx - is IT - I1 IR sin a cos e (3.3 )
1a

and

,n r1IT sin 2  ++ _ I' Cos

1<

- -IX - IT - y-- I'R sin e cos e (3.35)

Using the approximation for J- given in Eq. 2.62, the determinantalY n Y are determined

equation is again Eq. 2.71, where U0 , Yo' and-o

from Eqs. 3.33 and 3.34.

Similarly, for the single helix interposed between two dielectric

regions at r - a and with or without a conducting sheath at r - b, the

determinantal equation Is found to be the same as Eq. 2.73. As before,

Uo, Y£, and Y- for the single helix are simply Uo,0 1 Y L'O and Y- L'

respectively, but with U0 0, Y1, and y being determined from Eqs.
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3.33 and 3.34. The corresponding form of Vo for the two dielectric

problem is

k I--7iri ~Y IK' - k .1
1i l Y I K j~ 2' c s e ( 3 .3 6)h

The formulation developed in this section can now be used to

explore the effects of dielectric and metal loading.
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3.2 Results for Dielectric and Metal Loading

By implementing the formulation of Section 3.1.2, the effects of

loading are investigated simultaneously for both the contrawound and

single helix.

3.2.1 Dielectric Loading

The dispersion plot in Fig. 3.3 for cot e - 10 shows how the group

velocity and phase velocity are reduced as c 2/I is increased from 1 to

9. This behavior is also present in the experimental work performed by

Birdsall and Everhart [4]. They observe that as the distance between a

surrounding glass cylinder and the slow-wave structure is reduced, the

degree to which the velocities are loaded increases. Their results are

reproduced in Fig. 3.4. Inspection of this figure further reveals that

the effects of dielectric loading are negligible when the distance

between- the cylinder and the circuit is increased past a certain

point. The reason for this is the fields outside the circuit (Region 2)

decrease exponentially and consequently do not penetrate radially a

significant distance into Region 2.

Figure 3.5 attempts to correlate the experimental results for

loading by a glass cylinder of finite thickness to theoretical predic-

tions for dielectric loading, in which the dielectric of Region 2

extends to infinity. To do so, an equivalent relative permittivity for

Region 2 is calculated by volumetrically proportioning the relative

permittivity of the glass cylinder.

It Is assumed that the fields in Region 2 penetrate to a depth of

b/a- 1.21. Consequently, the slow-wave circuit "sees" an effective (two
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dimensional) volume of

vole - --. (b2 - 2) - (1212 - 2)
Vleff 2(b a -fl2 1

a

Vol eff - 1.46

Comparisons can best be made with the experimental results (Fig.

3.4) for the glass cylinder with dimensions bj/a o - 1.05 and

(b - bj)/b1 - 0.122. The ratio b0 /a0 is then 1.178 and the (two dimen-

sional) volume for the cylinder is thus

. 1 To2 _ ) _ ff.052)

vol gc  a2 b -o (1.178' - 1.05

0

Vol = 0.896
gc

The relative permittivity of the low loss glass cylinder is

assumed to be 3.0, and the equivalent relative permittivity for Region 2

is proportioned as

/vlgc (89'
2 - 3.0 (Vol - -3.0 \.6)

E2 - 1.83

The theoretical results for c. - 1.83 along with the corresponding

experimental results are snown In Fig. 3.5. The deviation between

theory and experiment is due to the foreshortened current paths which
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result when the two helix tapes are allowed to touch. However, it is

clear that the velocity loading is proportionally similar in both cases.

Figures 3.6 and 3.7, like Fig. 3.3, allow 2/ I to vary from 1 to

9, while cot 8 is fixed at 5 (Fig. 3.6) and 2.5 (Fig. 3.7). In all

three figures, the percentage of dielectric loading relative to no

loading is approximately the same.

In Figs. 3.8 and 3.9, c2/C1 is fixed at 1.5 and 9, respectively.

The overall shape of the dispersion curves changes as cot 6 Is Increased

from 2.5 to 10.

3.2.2 Metal Loading

The effects of metal loading are considerably different than the

effects of dielectric loading. No longer are there the forbidden

regions associated with the open structure. And the general shape of

the w-B diagram changes as the effects of metal loading become stronger.

The dispersion characte:'istics for a contrawound helix ( - 1,

cot e - 10) symmetrically oriented inside a cylindrical conducting

sheath are presented in Fig. 3.10. The relative constitutive properties

are k1/k 2  1 1, U1 /42 - 1, and E2 /1 - 1. By varying b/a, the relative

distance between the circuit and the cylinder, the aspects of metal

loading mentioned above are clearly seen.

The dashed curve, labeled 1, is the dispersion for the nonshielded

contrawound helix. The ends of this curve couple into the so-called

"velocity of light lines," as this is an open structure. Curve 1A shows

the effect of a conducting shield placed radially at a distance of b/a =

2. Instead of coupling into the velocity of light line, curve lA
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deviates from the nonshielded case at approximately B a/cot e - 0.84 and
0

couples into the coaxial TEll mode. This coaxial mode is formed by the

contrawound helix as the inner conductor, and the outer cylinder as the

outer conductor. As the outer cylinder is brought closer to the cir-

cuit, the cutoff for the coaxial TEl1 mode moves up in frequency.

Consequently,coupling between the fundamental component of the space

harmonics and the coaxial TEll mode occurs at higher values of ka

(curves lB and 1C). A point is reached where the shield is close enough

to the contrawound helix that coupling no longer occurs -- the TE1 1 mode

has moved out of range (curve ID).

As b/a continues to approach 1, more of the E-field between the

circuit and the cylinder is terminated on the cylinder. By this

mechanism, the field shape for the traveling wave remains unchanged over

a wider range of frequency, thereby reducing the dispersion (curves 1E

and 1F). For b/a - 1, curve 1G, all of the E-field terminates on the

cylinder, resulting in two dispersionless helically traveling waves --

one right handed, the other left handed -- each propagating axially at

p/21ra times the velocity of light. Whether or not this situation is

physically possible is uiscussed in Chapter Four.

As a comparison, the dispersion for the single helix in free space

(nonshielded) is plotted in Fig. 3.11, which repeats Fig. 3.10 with this

addition. The dot-dash single helix curve (labeled 2) parallels closely

curve 1G. The deviation between the two is shown on an enlarged scale

in Figs. 3.12 and 3.13.

The effects of metal loading on the single helix with the same

parameters as above are investigated in FiP. 3.1. Like the contrawoun'l
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helix, coupling with the coaxial TEll mode is reduced as b/a approaches

1. And like before, the ideal case of no dispersion is achieved when

b/a - 1 (curve 2D). Figure 3.15 shows how the tendency to couple to the

velocity of light line is reduced as the distance between the shield and

the helix becomes smaller.

The effects of metal loading on a contrawound helix of cot e - 2.5

are presented in Figs. 3.16 and 3.17.

Experimental analysis performed by Birdsall and Everhart [4] on a

ring-bar circuit inside a metal cylinder lends validity to the previous

theoretical results. Experimentally derived dispersion curves for two

different size cylinders, b/a - 1.33 and b.'a - 2.16, are reproduced in

Fig. 3.18. Also plotted are the theoretical predictions for the same

dimensions. It is clear that as b/a approaches 1, the w-B curves become

less dispersive. Observe also that for values of b/a > 2, the effects

of metal loading are minimal. Note again that the deviation between

theory and experiment is a consequence of foreshortening the current

paths. For the ring-bar geometry, this is equivalent to a large

connecting-bar width.

3.2.3 Simultaneous Metal and Dielectric Loading

How the dispersion is affected by the simultaneous loading result-

ing from a dielectric region interposed between the slow-wave structure

and a metal shield can be qualitatively determined by simply superposing

the individual effects of dielectric loading and metal loading. How-

ever, consideration of accuracy requires the use of the quantitative

analysis employed thus far.
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In Figs. 3.19 and 3.20, the relative constitutive properties are

k2/k I = 1.225, u 2/-I1 . 1, and 2 /i - 1.5. The w-B curves for various

values of b/a are plotted for the contrawound helix In Fig. 3.19, and

for the single helix in Fig. 3.20. In each case, the w-S curves become

ideally nondispersive as b/a approaches 1. Concurrently, the effects of

dielectric loading are reduced as the size of Region 2 is decreased.

This behavior becomes more pronounced as 2/I becomes larger.

In Fig. 3.21, the relative permittivity is increased such that

£2 /C - 9 and k2/kI - 3. The dispersion curves are again plotted for

varying values of b/a. These plots are repeated in Fig. 3.22, with

the w-B curves for a single helix (C2/el = 9 and c2 /c1 - 1) added for

reference.
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IV. SUMMARY AND CONCLUSIONS

The formulation of Chodorow and Chu [2] for the contrawound helix

is expanded to include the effects of dielectric and metal loading.

Since wave velocity is inversely proportional to the square root of the

dielectric constant whenever a dielectric material is added in the

region surrounding the circuit, the wave velocity is decreased. In

general, while dielectric loading reduces both the phase velocity and

the group velocity, the overall shape of the w-8 diagram remains

unchanged. However, this is not the case for metal loading.

As the degree of metal loading is increased, the dispersion is

effectively reduced for both the single helix as well as the contrawound

helix. The mechanism whereby this is accomplished is provided for by

the outer conducting cylinder. This cylinder allows the propagating

mode to retain in detail its particular shape by providing an alterna-

tive termination for the electric fields. Consequently, the field

pattern for this mode tends to change only in scale as the frequency is

varied. This effect is increased as the cylinder is brought closer to

the circuit, thereby reducing the dispersion. Unfortunately, the

reduced dispersion Is offset by an accompanying decrease in the circuit

interaction impedance. An inductive coupling of the helix currents to

the metal cylinder and the flow of current in the circumferential direc-

tion in the cylinder results in an increase of the excess stored energy

In Er between the circuit and the cylinder, energy which is useless for

interaction with electron beams.
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In the limit, the effects of metal loading would be greatest If

the slow-wave structure and the outer cylinder were allowed to touch.

The theory would not break down in this situation provided the currents

could be maintained along their helical path. If this could be accom-

plished, the field shape for the slow-wave mode would be "perfectly"

maintained independent of the frequency, and the phase velocity and

group velocity would become p/2wa times the velocity of light -- ideally

nondispersive. Unfortunately, If contact were to be made between the

circuit and the cylinder, the slow-wave mode would be shorted out such

that only circular cylindrical waveguide modes could exist.
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APPENDIX A

THE FOURIER DECOMPOSITION OF THE E AND H FIELDS

For a homogeneous source-free region, the vector nature of an

arbitrary electromagnetic field can be expressed as the sum of TE and TM

fields, and in the case of circular cylindrical geometry, these may be

defined as being transverse with respect to the axial coordinate. For

regular boundaries such as that for a circular waveguide, the TE and TM

portions of the fields uncouiple, giving separate solutions. However,

for open structures such as the single helix, contrawound helix, and

ring-bar circuits, the skew boundary conditions necessitate both the TE

and TM aspects of the fields to be simultaneously present.

The Ez and Hz field expressions for the free space problem shown

in Fig. 2.1 are

1E (r 
z  At, nIt(Y ,nr) 0 < r < a (A.1)

*,z)-JBi'nZ e B£

- Z ee

2Ez(rJ,z) B ,nK (Y ,nr)  a < r (A.2)

and

1H
z (r,¢,z) CtnIt(Y1,nr) 0 < r < a (A.3)'1 -jBZ,nZ eJ9£

2Hz(r,o,z) D 2,nKt(Y nr) a < r (A.4)

and from these expressions and Maxwell's equations, the other field
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components take the form in Region 1:

(0 < r < a)

E (r~z.0) A, [' - nr

C CI tr) et,n (A.5)

yrz~ t ,n -L,n n

(Er) (r nO(COnA)]

1r (rz0 - 1, Er AtnYnr

lu i Ytz -Znjr e'Zn e P (A.6)

L'i~n
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and in Region 2,

(a < r)

(r,z o) - [ t n r K r)2n. L ) 8 , n t L ,n

JwliDKi- )e' ~ e zO(A.9)

2r t,n - L R.,

E (r,O,z) co isI
2 *BtK(Y nr)

n ry

H (r,,z) - c B K(Yr)2r 0 ,n-- L X~r) t~ntn
+ - C

n - 93c -Yt



In the above equations, the four sets of Fourier coefficients A ,n,

B ,n' C ,n, and D ,n are the result of the TE and TM fields in the two

regions, as summarized in Table A.1.

By expressing the Fourier coefficients for the fields in terms of

the Fourier coefficients for the surface current densities on the two

helix tapes, the field expansions for the contrawound helix take the

form:

iEz(r ,$,z)

£,n--j ka L"',na ,t,n + ZJn) Y a 
-7 i En + 

K£ (Y,n a) t(Ynr) 0 < r < a (A.13)

e-Js 1n z e JZ(
ee

It(Y ,na)KL(Y Z,nr) la < r (A.14)
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Table. A.1. TE and TM Fourier coefficients used in conjunction
with the formulation of Appendix A.

REGION

1(Ocr') 2 (Ccr)

TM N A. B

TE CI n  DIn
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E(r.Cz)

to x~ a, jZ B +

2 E (rCz) 
k ~ ~ Ytna ~ ~){ K t(Yftn a)I t (Y t,nr) } -Ki(ytL a) I (-It nr)

0< r <a (A.15)

o-si n J < r (A.16)

1ir L I, n t n

- k'a J + W'i+r

E i~~~n--cm yina LnEa)raK( ~
2 r't n

- E ~ ) J 
j + O

K - j ~ ytnr)}0 < r <a (A.17)

t(y Ina)K i(y t~ )0<r(A.18)



2 H (r,,z) 
m Ln-

Ist~ J + +

(r, a z) i+ +0

-t )~ } ~
- Y~l ~ .e~)- is 9E~a (.e - +

I (Y fa)Ij(Y r) a < r <a (A.22){ t, ,n (A.22)_
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H Hr,,z) K .(YLna)j( ", nr)
-j

2r.C' ' ( )K'(- ,r)
jr z3 i)a -J Ena

i E n J +L Jl,n +"jtn Ln 1n

KL(Y a)Iz(YL,n") 0 < r < a (A.23)
aK- 81,nnat

a' e-JB£inZ ej O

ree

IL(YL,na)KzYf,nr)i a < r (A.214)

Considered next is the situation in which Regions 1 and 2 are

allowed to have individually distinct dielectric properties, as illus-

trated in Figs. 3.1 or 3.2. The intrinsic wave impedance is given by

lii i =1, 2 (A.25)

where i denotes either Region 1 or Region 2. Similarly, the radial

propagation constant is defined to be

2, - kl) i - 1, 2 (A.26)

For convenience, a shorthand notation is adopted whereby the L and n

dependence is assumed, In this notation,
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E 'l AI'(Y r) - 1CI(y r) e- z e (A.33)
1 r 1 y 2r 1Y1

Hz w I(w r) e-JBZ ejt¢ (A.34)
1 T1

HO k J AI'(Y 1 r) - CI(Yr ) e-jBZ ej €  (A.35)

1 2 135

k} eJz eJ

ir - 1 A AI(Y r) + .4o CIW(-Y r)je- e$ (A-36)

and in Region 2,

(a < r) or (a < r < b)

2 Ez r2BK e(Y2 r) e-Jsz e Jt (A.37)

E A = BK (y r ) - DKY 2r) Je e (A.38)

2r y 2- r"2 y 2r e2
22

BK D Yr) e-(J~zeJBZ

EH€ 2 j BKI h ( 2r) _k DKh(y r) eejjZ z eJ4 (A.39)
2

Hz D -Yr e{JTJBK ~ .A.Dh(jei~ ej (A.40)

2$ 2 K (-Y r) - K(yr e rzet

122
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'Y ( E * (A. 27)

6 0 I9n (A.28)

F (f ir) F I (y 1n r] I F9 I II-I KIP, I,', KjA.9

and

A A A E,n

B •*I~
(A.30)

C C, n

D D tI,n

Keeping in mind that the Fourier expansion of the E and H field

components is over the double summation 7 , the shorthand form of

these field components becomes in Region 1,

(0 < r < a)

1Ez n 1 AI(Y1r) e- j
z  e j Z (A31)

n I  - k1 CII(Y r)J e -  J8e ¢  (A.32)
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eJ eJ EW -i nz -JBnp/2 -JB0P/2 Iej e-JBnZSAtne e e e -e I A£, n  •

t,n L,n

(B.20)

The necessary and sufficient condition for this equation to be satisfied

is

-J18 -nP/2 J8oP/2-2u

e e e J 1 - eJ 2Wu (B.21)

where u is an integer. Application of Eq. B.17 to Eq. B.21 implies that

L -n - 2u (B.22)

or

n - 2u + Z (B.23)

At this point, one may pursue the analysis from two different perspec-

tives. The first considers the problem redefined in terms of a pseudo-

period L - p/2. The double summation over I and n is restricted as a

consequence of Eq. B.22 so that if Z is even, n is even, and if . is

odd, n is odd. This then implies a coupling between * and z, as would

be expected, and which is necessary for the orthogonality integral to be

evaluated over p/2 rather than the usual full period p.

The second and more familiar scenario maintains orthogonality over

the entire period p, but redefines the propagation characteristics for

the space harmonics. Substituting Eq. B.23 for n in the expression for

8 given in Eq. B.17 and noting u is allowed to vary over the entire
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S+2n (B.17)n o p

The result is that the propagation constant for the nth order space

harmonic is defined by Eq. B.17.

When step-turn periodicity (also called screw symmetry) is pres-

ent, as is the case for the contrawound helix, Floquet's theorem pro-

vides the expression,

E + W, z + P)-e-JO0p/2 E(O, z) (B.18)

Like Eq. B.1l, the above equation states that the electric field evalu-

ated at * and z (written E(¢, z)) and propagated a distance
-JBoP/2

p/2 (written e 0 ) is identical to the electric field evaluated at

the position 0 + i and z - z + p/2. The fact that the fields at

these two positions are inverted from one another is automatically

accounted for by * - 0 + w.

By writing the Fourier expansion for the z component of the E

field at the position € - 0 + w and z - z + p/2,

E A, I (Yn r) I(Y e j e J2EWi s nz -Js n p/2

z  r, + n, z + I nr
r 9 a ,n--- in

(B.19)

and substituting this along with Eq. B.12 into Eq. B.18 at r - a, one

obtains the following equation:
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(written e ), is identical to the same functional form for the E

fields evaluated instead at z - z + p (written E(z + p)).

For a periodic slow wave structure with circular cylindrical

geometry of radius "a," the electric field can be decomposed into a

Fourier series. Consequently, E(z) is written as

I n(Yr) eJ -JenZ
E z(r, , z) A t,n I Y aJ e e (B.12)

r a t,n-- n

where A is the amplitude factor andt,n

2 y2 + k2 (k - w/c) (B.13)
n n

The Fourier decomposition of E (r, *, z + p) is similarly given byZ

* It(Yn r) J4 -in z -j np

E z(r, €, z + p) I A An i yna) e e e (B.14)

r 5 a Zn_

Letting r - a and substituting Eqs. B.12 and B.14 into Eq. B.11 yields

-J~nz -Jinp "JB°p ez ¢ e(.

I A, n e J  en en a e I A , n  en (B.15)
t, n Xn

For Eq. B.15 to be true implies that

e e * - ji2nn (B.16)

further implying that
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For a given mode of propagation and at a given frequency,
the wave functions at two points on a transmission system,
separated by one period, differ by a complex constant.

The application of Floquet's theorem to periodic slow wave structures

allows one to determine the propagation characteristic of the space

harmonics.

For a lossless periodic transmission system, the E fields are

given the form,

E(z) = E(z) e 0 (B.8)

which corresponds to Eq. B.7 with r = -JB0 ; and for z - z + p, Eq. B.8
0

becomes

E(z + p) = E(z + p) e e (B.9)

From Floquet's theorem, it is necessary that E(z + p) = E(z), as seen in

Eq. B.6. Thus, Eq. B.9 can be expressed as

E(z + p) - E(z) e e (B.10)

which is obviously

E(z + p) - E(z) e (B.II)

The above equation simply states that the functional form for the E

fields, evaluated at z (written E(z)) and propagated a distance p
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A useful corollary to Floquet's theorem is obtained in the follow-

ing manner. Let k take the form,

k - enpr (B.3)

If O(x) is defined as

O(x)- e rx y(x) (B.4)

then

O(x - np) - eT2p erx y(x + np) (B.5)

Applying Eq. B.2 to the above equation gives

(x + np) w e -npr e-rx [npr y(x e-rx y(x)- O(X) (B.6)

so that Floquet's theorem states that one can always find a solution to

Mathieu's equation of the form,

y(x) - e 0(x) (8.7)

where 01(x) is periodic with period p.

It should be apparent from Eq. B.7 that the functions y(x) can

represent wave functions. In light of this, Floquet's theorem becomes a

statement about periodic translational symmetry. For a periodic trans-

mission system, Floquet's theorem may be stated as follows:
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APPENDIX B

FLOQUET'S THEOREM AND STEP-TURN PERIODICITY

Floquet's theorem results from a consideration of the second order

linear differential equation,

y"+ [a+ b cos y -0 (3.1)

where a and b are real constants. Known as Mathieu's equation, Eq. B.l

occurs in problems of wave motion with elliptical boundaries, the

simplest example being the vibrations of an elliptical drum head.

Although the equation can be solved by the usual power series method

(method of Frobenius), such a solution is not valid when x - np, "n"

being an integer. Other methods are then employed to arrive at the more

general solution and, of particular interest, solutions which are

periodic in x, i.e., y(x) - y(x + np), where n is an integer and p is

the period. However, such periodicity is obtained only when the con-

stant "a" is allowed certain values. If "a" differs from these allowed

values, then the solution is no longer periodic. Instead, it takes the

form

y(x +np) - ky(x) (B.2)

k being a (complex) constant. Equation B.2 is the statement of Flo-

quet's theorem and, though not performed here, it is a simple matter to

prove this theorem using linear algebra [6, 7].
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Finally, the Fourier coefficients B and D can be -Ypressed in

terms of 0J± and zJ through the relationships

B A n1 (A.58)

and

D 2 c - (0j- , J)] (A.59)

At r - a, Ez and E in terms of the surface current density are

E z(r - a) 1 Jl 1I [T(zj- + Zo+) + X +j- +0+] e-jBZ eJ4 (A.60)

E (r . a) - j -J L I [(J- + zj+) + X0J + J +

- It ~[R~ +zj+) +S¢- +j + eiz ejt (A.61)

If nI = n2, Eqs. A.bO and A.61 reduce to Eqs. A.13 (A.14) and A.15

(A.16) for r - a, respectively.
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and

[I- Iu)a (A.55)

This is also true for Ke, K'e, Kh, and K h, such that

K e [(*)],n )2a]

KI a Kv[(na]
K'- K[(Yn)2a1

A conducting sheath placed at r - b in Region 2 (Fig. 3.2) effects only

the last four equations. These become (in shorthand notation)

Ke w I(Y2b) K(Y2a) - K(Y 2b) I(Y 2a)

K' a i'(Y b) K'VY a)" K'(Y b) I'(Y a)
e 2 2 2 2

(A.57)

K = i'(Y 2b) K(Y 2a) - K'(Y 2b) I(Y 2a)

K - I(Y2 b) K'(Y2 a) - K(Y b) I'(Y2 a)
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3  n I n2 tI Kh (A.48)
a Y1y 2 [k2nt2YlIKe - klrIlY2KhI']

M 2. a 2 rl,1 2 kha22 - Y2h2, (A.49)

(Y2 )(lT "Yl IKe - k 1n 1Y2 K hAJ9

and

N =k 1 2y2I'K - 1 K'I f (A.50)

Y1Y2n2K 1 h - M[ 2a ( ia).j

The expression for A is

A - J [T(ZJ - + zj+)+ X(Oi- + +(A.5)

where

1
T -(A.52)

N

and

k 1I'y1 Y a)X N s -a

In the above equations, the argument of the modified Bessel functions I

and I' is Y 1a, i.e.,
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21 tk BKh (Y r) + J'~- DKA (yr e-jSZ ej (A.4~2)
2 Y2 h 2 n 2 r
'{Y2 2

where Ke Ke, Kh, and K' have the functional form given in either Eqs.

3.16 or Eq. 3.17. As before, the Fourier coefficients A, B, C, anc D

are a consequence of the TE and TM fields, as outlined in Table A.l.

Next, the Fourier coefficients A and C can be written in terms of

the z and * components of the surface current density on the two

helices. Letting

zj . z (A.43)L,n

and

J (A.44)
1,n

the expression for C is

C - R(zJ - + zj*) + j4+) (A.45)

where

-- = - y a (A.'16)

~Y a)2 _(Yia)2]A46

S1 2 IN [( 2~

n1 
Q is 

2n 2 IIN Y 2 a[( 2 a) I (IIa)

k Iy a2 nI'YIa(Y~an Fy2 - (Yla)21  Q A~

tn2 1 -Lm-( )(.7
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since E - 0 at r = *, and from No. 2,

f E s E ds f E •n x V x E ds a 0 (C.9)
helix tapes helix tapes

since n x V x E = 0 on wie helix tapes. Similarly, applying No. 3 to

the infinite planes at z - 0 and z - p gives

* 2id€[E

f E •s - E ds -f r dr dO E(z - 0) - s(z - 0) • E(z - 0)
planes: o o
Z-0, z-p

+ e iop E (z - 0) s(z - p) • e 0 E(z - 0)]

- 2w
. f r dr f d, E (z -0) s(z. 0) + s(z P) E(z - 0) - 0

o 0

(C.10)

since s(z - p) = - s(z - 0) on account of a reversal in the direction

of n. Considered together, Eqs. C.8 through C.1O imply that

f E s • E ds- 0 (C.11)
S

and Eq. C.1 reduces to

L 1 f [(V -i E* (V E) k k2E* * dv (C.12)

By application of the vector Green's theorem to Eq. C.12, L is trans-

formed to
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to be satisfied requires that

V x V x E - k2E In V (C.6)

n x V x E - s • E onS (.7)

Thus, E must satisfy the vector wave equation in Eq. C.6 and the bound-

ary condition in Eq. C.7, as expected.

Next, for the boundary value problem consisting of the contrawound

helix in free space, V is taken to be an infinitely large circular

cylinder having infinite radius and finite length of one helix pitch

p. The surface S enclosing V consists of the two Infinite planes z = 0

and z - p; one cylindrical surface at r = *, 0 9 z 6 p; and the metallic

surface of the helix tapes at r - a.

The physical nature of the problem Is such that E must:

1. Vanish at r -

2. Have no tangential component on the metallic surface of the

helix tapes.

3. Satisfy Floquet's for a periodic structure, i.e.,

-JB p
E(z - p) - e E(z -0)

Using these conditions, the surface integral in Eq. C.1 can be shown to

be zero. From No. 1,

f E s E ds - 0 (C.8)
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6. f (V 6E)* (V E) dv. J+ (V , E)* (V ,, 6E) dv
V V

-k2 f 6E dv k 2 f . 6E dv

V V

+ 6E * • s E ds + E •s • 6E ds (C.2)
S S

or since

f s 6E ds- 6E s • E ds (C.3)
S S

Eq. C.2 is written as

6L - v ,, 6E) (V x E) k ,2 6E 1 dv + f6E s • E ds + c.c.
V 0

(C.4)

Note that the unexpressed terms in Eq. C.4 are extraneous for the fol-

lowing discussion.

By means of the vector Green's theorem, 6L can be transformed to

the form,

6L f 6E • (V - x E - k2E) dv
V

f 6E* • (^ x - - E) ds + c.c. (C.5)
S

Because the first variation of L is zero and 6E is an arbitrary varia-

tion, each integral in Eq. C.5 is individually zero. For this condition
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APPENDIX C

DERIVATION OF THE LAGRANGIAN USED IN CONJUNCTION WITH
THE VARIATIONAL METHOD OF SOLUTION

To employ the method of calculus of variations (the variational

method), it is necessary to determine the correct form of the Lagranglan

for the problem. One begins with the general form of the Lagrangian for

Maxwell's equations:

L - f[V x E)*• (V - E) - k2 E* • E] dv + fE* s • E ds (C.1)

In Eq. C.1, S is the surface enclosing the volume V under consid-

eration. The most general boundary condition on S is represented by s

such that n x V x E - s • E. Conditions 2.14 and 2.15 (noting

n x V x E - -Jwun x H) are then a specialized case of s - E. It should

be pointed out that s is Hermitian and that the relationshl s • E =

*
E - s is valid for any arbitarary vector E.

The Lagrangian must be constrained to match the boundary value

problem. Consequently, the first variation of L,

6L - 0

is performed giving

t See also reference 2, pp. 47-51.
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Bt,n 8o + (t + 3n) (B.29)

The single helix Is invariant under the differential step-turn

symmetry,

E (r, *'+ LIT Az, z + A = e 0 E(r, *, z) (B.30)

The coupling expression for t and n (equivalent to Eq. B.22 in the case

of 1800 step-turn symmetry) is found to be

S- n - u (B.31)
Az

Though u, like t and n, is allowed to vary over the entire range of

integers, Eq. B.31 is true for all values of Az only if u a 0. There-

fore, L - n such that the Fourier decomposition of Ez for the single

helix needs to be summed over only one index.
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range of integers, one can define 8 ,u to be

8,u B . 2 (I + 2u) (B.24)

or, since u and n are dummy indices,

2w

B = B0 + - (i + 2n) (B.25)

The Fourier expansion for Ez is then rewritten as

Ez (r, *, z) = t A II(Yt nr) e J (B.26)

in which 6 ,n is given by Eq. B.25 and Y£,n is defined by

2 2 _ k2 (B.27)i , n i B,n

Thus, coupling between 0 and z occurs through the propagation constant
th

for the L,n order space harmonic.

It becomes apparent that if step-turn symmetry is present in a

given problem, then coupling exists between * and z through the propaga-

tion constant B ,n . For example, the 1200 step-turn symmetry

7 J8 0) -oP/3

E (r, + L , z + = e E(r, *, z) (B.28)

results in 8 tn being given by
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L -f (V • V v E - k2E1 )dvvi

+ f (V V x E - k2E )dv

V1 2 2 ~ x 2  2

- E nx VxE ds

S

f. (n 1x V E 1 V x E 2) ds (C.13)-- 1 -1 -2
r-a,
excluding tapes

where the subscripts 1 and 2 denote quantities for r a and r Z a,

respectively. The first three integrals in the above equation are zero

because of Eqs. C.6 and (.11, and the fourth can be extended over the

entire surface r = a because of Eq. C.9. With these simplifications,

the Lagrangian is restricted to an integral over the surface r - a. Let

I denote the Lagrangian, now properly constrained to fit the boundary

value problem. Thus, from Eq. C.13,

I - X • In1  V x E1 + n2 x V x E2) ds (C.14)
ra

JWU f E n1 ' (_1 - t2) ds (C.15)
r-a

In which the relation -Jw1Uf = x E Is employed and noting n - -2

To facilitate understanding, the problem has been limited to the case

of 0l M P2 = P
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By expressing t, - H2 in terms of surface current densities, one obtains

the variational integral

=J f dz f a de E (r - a) J- + E (r - a) [- + Z j
0 0 +

(C.16)

The exact solution to the boundary value problem will have I - 0. This

Is because the integrand of I vanishes everywhere; E (r = a) and€

Ez (r - a) vanish on the helices, while J± and zJ± vanish off the

helices. However, the converse statement is not true, and to obtain the

exact solution, one must solve the variational equation

61 - 0 (C.17)

Nevertheless, one can get an approximate solution by simply solving the

equation I = 0.

The physical interpretation of I is very simple; I is the complex

power which might be generated or absorbed by the cylindrical surface

r - a. It is, therefore, certainly reasonable that I should be zero.

The case of a contrawound helix separating two dielectric regions

at r - a and bounded by a perfectly conducting cylinder at r - b is

analyzed in much the same fashion. The resulting variational integral

is again C.16, which is not surprising based on the physical interpreta-

tion of I.
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APPENDIX D

RELATIONSHIPS BETWEEN THE COEFFICIENTS OF THE FOURIER
DECOMPOSITION OF THE SURFACE CURRENT DENSITIES

FOR THE SYMMETRICAL MODE

The symmetrical relationships between the parallel and perpendicu-

lar components of the surface current densities are

J *,, z) - IJ-(a,-, z) (2.4Oa)

J+(a, 4, z) - LJ (a - , z) (2.4Ob)

the superscripts "-" and "+" representing the right-handed and left-

handed helices, respectively. With the Fourier decomposition of each

surface current density component given as

1 t -Jis ,n z J10
Ij±(a, *, z) - J e e (2.la)

J (a, p, z) - e Ln e (2.41b)- £,n--- ,n"

one can determine a relationship between the two sets of coefficients

J, and Jn as well as the two sets of coefficients J and
1,n 1,n Zn

1 j-

th

Since the propagation constant for the t,nt order space harmonic

is defined as
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+ 2B [1 + 2ni (2.12)
L,n 0 o p

it is observed here that

--+ [-L + 2(n + L)] - B (2.43a)-L,n* 0o p i,n

and that

SZ n-t 0 + 2 [2 + 2(n - t)] - in (2.43b),n_~- °  p

Next, Eq. 2.4Oa can be written in terms of the Fourier expansion given

in Eq. 2.41a:

-+ e tnZ ej o -€ J eJBtn' ej z9. ) (D.1)
n,n ,nX, £,n

Letting L * - E and n a n + Z for the right-hand side (RHS) of Eq. D.1

gives

J e-JBI'n Z eJ" Ij- e-is- Z,n+t Z eJ4 (.2

i,n Z,n E,n -En+

Note that the RHS still sums over the same range as the left-hand side

(LHS) as a consequence of L and n spanning the entire set of integers.

Substituting 8£,n for B_,n.Z (Eq. 2.143a) in the above equation finally

gives the result,

I eJBt,nz eJ.  - Ij- eeJBEnz 6 (D.3)
Ijn I,n L -,n+t
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From orthogonality, the only way the LHS can equal the RHS is if the

coefficients are equal term by term. Thus,

t , n -£,n+a

Referring again to Eq. D.1, one could Just as easily make the substiti-

tion L • - 2 and n w n + I for the LHS to produce the relation,

li (2.4 4b)-I,n+t 1,n

Similar relationships hold true for the perpendicular components.

Nameiy, that

J, = ,n+ (D.4)

and

J - (D.5)-L,n+t 1,n

Furthermore, using the relationships in Eqs. 2.38 and 2.39, it is a

simple matter to show that

L,n -£,n+t

The expression for Hz as given in Eq. 2.34 is rewritten here as
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[I;.Ytna) K£ (Y r) r a

i 'H 1,n e LJ,nZ ejz

L, n-- L e

(D.7)

ZH£,n *- (Y ,a) Jn + 0, (D.8)

By substituting Eq. D.6 into Eq. D.8, one finds that

ZH, " - Ya) J- - -J-- 0 for 1 - 0 (D.9)

Equation D.9 shows that the fundamental component of any wave field

operating in the symmetrical mode is a pure TM field; the TE parts of

the fundamental component arising from the two helices cancel each

other. In other words, the symmetrical solution has no H component-Z

with E - 0. This Is rigorously true because no approximation is

Involved.
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APPENDIX E

NUMERICAL CONSIDERATIONS

The numerical solutions to the determinantal equations are

obtained with a Hewlett Packard 1000 minicomputer.

Because of numerical limitations and because the series in Eqs.

2.71 and 2.73 converge slowly, these equations are reformed to provide

rapid convergence [8, 9]. Equation 2.71 is transformed to

+L sine22A [ 3

+ 2 ,L sin) - 0 (E.1)
-~0 0,0 9

where

oo (Yoooa)2 si. 2  - (ka)2 cos2  (E.2)

and

w 2 &2 12O21 ,2 - 1 .

A() cos(t) 1.2002 + & log( ) C2 1 4

3 L-1 9.3 2 1 28

(E.3a)

A (o) * Z L 1.2002 (E.3b)
3- 3

In Eq. E.1, the series
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2 L sine (E. 4)

9.-i

is chosen because it converges at about the same rate as the series

)(E.5)

The term Lo'o is reasoned by examining the quantity (Y ,° + Y- ,o) for

Z - 0. From the physical considerations, the expression

2Yo0 o > (Yg,0 + .. 9 0 ) (E.6)

is guaranteed for all L. Thus, Lo,o is a consequence of

L O2Y 2[ a)2 Ko(ja) IO(Yoa sin2e)

0,0 o - o 0 o o

+ (ka) 2 KoY 0 .0 a) IoCYooa) cos28 (E.7)

Equation E.2 results from making the approximations that K I 1/- 2 and0 0

K'I' - - 1/2, for Y a - 0()
0 0 OO

2
The series E.4 summed by manipulating aj2/L into a sultat__e form

using the definition for a, given in Eq. 2.69. This form is as follows:

sinE2j 3 2  a2- 1T - cos(P.)
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or

2

T-" & [A 3(o) - A3(&)] (E.8)

where A3 is defined by Eq. E.3.

Using the same reasoning, Eq. 2.73 is transformed to

U + V + L sin 0 L- FA(0) - A + jj 2(Y+ Y L sin~' =00 o o ~2 13 3 0

(E.9)

where

Lo (o a 2 si28 ka2

L Ya) sin 2 - (ka cos B (E.10)

Equations E.1 (resp. Eq. E.9) is solved numerically to obtain ka

as a function of 8oa (resp. Ba) for the contrawound helix (resp.

single helix) in free space. For the two dielectric problem of Chapter

Three, Lo o (resp. L0 ) is scaled by the factor

n1

in which the argument of the modified Bessel function is Y a (resp.
f.o

To further facilitate numerical calculation, a numerical device is

employed which extrapolates an infinite series to its true sum, using a
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finite number of approximations. For example, if f1 represents a par-

tial sum of Eq. E.1,

f . 2U + L sine iA(o) - ^( )

i 0,0 0,0 2 113

+ 2 a £ + Y_£ -L i- (E.11)

then the true value of the infinite sum is approximated by the 
following

extrapolation:

r - (f 1+2 "fi+l) 2

2D i+2 fi+2 - 2fi+ 1 + fi)

Known as Aitken's 62 process Ell], this extrapolation may be used to

accelerate the convergence of linear iterations provided

fa f ) - C = c(r - ) Icil 1 (E.13)

The physical considerations again ensure that condition E.13 is satis-

fied for the determinantal equations E.1 and E.9.
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